

RAPPORT D'ÉTUDE N° DRC-11-108130-06358A 30/06/2011

Campagnes de prélèvements des eaux d'infiltration effectuées par l'INERIS au fond de la mine Amélie en juillet et septembre 2010

maîtriser le risque | pour un développement durable |

Interprétation Campagnes de prélèvements des eaux d'infiltration effectuées par l'INERIS au fond de la mine Amélie en juillet et septembre 2010

Client: STOCAMINE

<u>Liste des personnes ayant participé à l'étude</u> : Arnaud PAPIN de l'unité RESA (Direction des Risques Chroniques) pour ce qui concerne le volet analytique.

PRÉAMBULE

Le présent rapport a été établi sur la base des informations fournies à l'INERIS, des données (scientifiques ou techniques) disponibles et objectives et de la réglementation en vigueur.

La responsabilité de l'INERIS ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes ou erronées.

Les avis, recommandations, préconisations ou équivalent qui seraient portés par l'INERIS dans le cadre des prestations qui lui sont confiées, peuvent aider à la prise de décision. Etant donné la mission qui incombe à l'INERIS de par son décret de création, l'INERIS n'intervient pas dans la prise de décision proprement dite. La responsabilité de l'INERIS ne peut donc se substituer à celle du décideur.

Le destinataire utilisera les résultats inclus dans le présent rapport intégralement ou sinon de manière objective. Son utilisation sous forme d'extraits ou de notes de synthèse sera faite sous la seule et entière responsabilité du destinataire. Il en est de même pour toute modification qui y serait apportée.

L'INERIS dégage toute responsabilité pour chaque utilisation du rapport en dehors de la destination de la prestation.

	Rédaction	Vérification	Approbation
NOM	Fabrice QUIOT	Philippe GOMBERT	Mehdi GHOREYCHI
Qualité	Ingénieur à l'unité COSM du pôle RISK "Risque et technologies durables", Direction des Risques Chroniques	Responsable de l'unité ESEG " Eaux Souterraines et Emissions de Gaz", Direction des Risques Sol et du Sous-sol	Directeur des Risques du Sol et du Sous-sol
Visa	E juice		

SOMMAIRE

1.	REMARQUE PRELIMINAIRE	5
2.	CADRE ET OBJECTIF	5
	SITUATION DES ECHANTILLONS PRELEVES LORS DES DEUX CAMPAGNES DE PRELEVEMENTS	7
3.1	Campagne de juillet 2010	7
3.2	2 Campagne de septembre 2010	8
4.	PROTOCOLE ANALYTIQUE ET RESULTATS D'ANALYSES	11
	Analyse des 6 saumures prélevées en septembre 2010 Caractérisation des éléments métalliques dans la cendre volante (Am	
5.	INTERPRETATION	17
5.1	Eléments caractéristiques des cendres volantes	17
5.2	2 Eléments caractéristiques des saumures	17
6.	CONCLUSION	19
7.	LISTE DES ANNEXES	21

Liste des figures

Figure 1 : Premier point de prélèvement en juillet 2010 (plan issu du compterendu des travaux de comblement du puits Amélie 2, MDPA)	7
Figure 2 : Second point de prélèvement en juillet 2010 (plan issu du compte- rendu de visite au fond en 2007, MDPA)	
Liste des tableaux	
Tableau 1 : Synthèse des prélèvements et mesures réalisées (seconde campagne, septembre 2010)	
Tableau 2 : Résultats de la lixiviation réalisée par l'INERIS sur la cendre volante du puits Amélie 2 (analyse du lixiviat sous traitée au laboratoire Eurofins)	
Tableau 3 : Résultats du lessivage/minéralisation totale réalisée par l'INERIS sur la cendre volante du puits Amélie 2 (en μg/g)	
Tableau 4 : Synthèse des résultats d'analyses pour la seconde campagne, sentembre 2010 (INFRIS)	14

1. REMARQUE PRELIMINAIRE

Cette étude s'inscrit dans le cadre des travaux en cours à l'INERIS sur le devenir du stockage de déchets de STOCAMINE en Alsace. Après une analyse critique des études déjà réalisées, une phase d'étude de comparaison des différents scenarios a été réalisée par l'INERIS. Elle a porté aussi bien sur l'option du retrait et restockage sur des sites en Allemagne que sur le scenario du stockage illimité à STOCAMINE.

Une dernière phase d'étude est actuellement en cours après cette phase de comparaison. Elle porte sur le stockage illimité à la demande de STOCAMINE.

Les résultats de la première modélisation hydrodynamique et de transport de polluants ont indiqué que l'impact des déchets sur la nappe d'Alsace dépendait entre autre du chemin emprunté par la saumure polluée dans les puits d'exhaure.

Deux hypothèses ont alors été émises : le passage à l'intrados ou à l'extrados des puits.

La présente campagne d'analyse d'eau prélevée dans les puits des MDPA vise à vérifier laquelle de ces hypothèses est pertinente.

2. CADRE ET OBJECTIF

Dans le cadre de l'étude confiée à l'INERIS par STOCAMINE portant sur la rédaction d'un dossier de cessation d'activité, l'INERIS évalue notamment les risques associés pour la ressource en eau et en particulier la nappe d'Alsace. Les investigations et résultats présentés dans ce rapport alimentent la réflexion en cours et concernent le scénario de stockage à durée illimitée.

Au sein des travaux miniers du secteur Ouest, où STOCAMINE est implanté, le personnel des MDPA observe depuis quelques années l'ennoyage progressif des galeries et l'arrivée d'une eau d'infiltration. Les précédents résultats d'analyses acquis par les MDPA indiquaient que ces eaux d'infiltration pouvaient être qualifiées de saumure¹. Afin d'observer et de caractériser ces saumures, provenant des niveaux supérieurs, et en particulier de déterminer si leur circulation se fait par l'intrados ou l'extrados des anciens puits d'exploitation aujourd'hui comblés par des cendres volantes², il a été décidé de réaliser des observations et des prélèvements au fond pour rechercher ensuite au laboratoire des traceurs de la circulation par l'intrados des puits. En effet, la traversée des cendres volantes peut conduire à un enrichissement des eaux d'infiltration en certains éléments traces métalliques caractéristiques.

Ces résultats peuvent, d'une part, permettre d'évaluer l'efficacité de la méthode de comblement et, d'autre part, confirmer l'hypothèse de passage préférentiel par

INERIS-DRC-11-108130-06358A

¹ L'eau douce se charge en sels avant de parvenir aux galeries et devient une saumure (cf. résultats en K, Na et Cl).

² Sur les 15 puits d'exploitation du secteur Ouest seuls Joseph et Else sont encore ouverts (STOCAMINE).

l'extrados considérée par l'INERIS dans l'estimation du débit d'ennoyage de la mine.

Deux premiers échantillons de saumure ont été prélevés en juillet 2010 par l'INERIS au sein des travaux miniers encore accessibles de la mine Amélie (stalactite Amélie 2 et mur Max). Du fait de leur forte teneur en sels et compte tenu de la précision des analyses demandées (pour identifier un enrichissement potentiel au cours de la traversée des cendres), leur analyse n'a pas pu être menée par le laboratoire Eurofins auquel MDPA fait généralement appel dans le cadre du suivi de la qualité des eaux de la nappe d'Alsace. D'autres laboratoires (IPL, université d'Avignon...), reconnus dans le domaine de la pollution des eaux, ont également été consultés par l'INERIS mais la précision des analyses demandées ne pouvait être atteinte par des méthodes « classiques ». Dès lors, l'INERIS, avec l'accord de STOCAMINE, a défini puis testé en interne un protocole analytique adapté pour lequel du matériel spécifique a également été acquis.

Dans le cadre de cette phase d'essais, réalisée au début du mois de septembre, des analyses ont été menées sur un échantillon de cendre volante remis par les MDPA lors de la campagne de prélèvements de juillet 2010 afin de caractériser ce matériau (échantillon conservé suite au comblement du puits Amélie 2).

Sur la base de ces premiers éléments, une seconde campagne de prélèvements, à différents niveaux d'Amélie 1 et Amélie 2, a été réalisée à la fin du mois de septembre 2010. 6 prélèvements de saumure ont été effectués à la base de stalactites ou dans des « flaques » au mur des galeries.

Le protocole analytique suivi et les résultats de ces analyses sont présentés ciaprès. Les bordereaux d'analyses se trouvent en annexe.

3. <u>SITUATION DES ECHANTILLONS PRELEVES LORS DES DEUX</u> <u>CAMPAGNES DE PRELEVEMENTS</u>

3.1 CAMPAGNE DE JUILLET 2010

En juillet 2010, un premier échantillon de saumure a été prélevé à la base d'une stalactite située à quelques mètres du puits Amélie 2 (étage – 286 m), cf. point vert sur le plan ci-dessous.

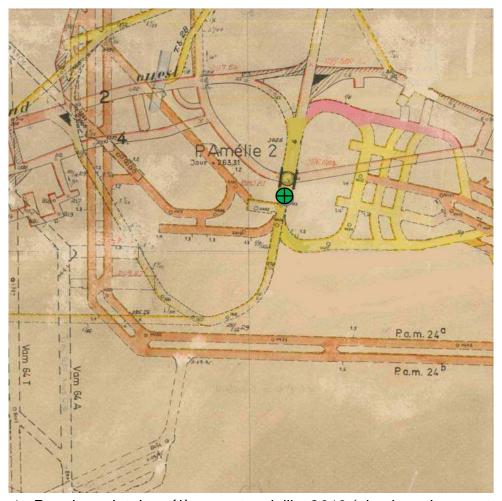


Figure 1 : Premier point de prélèvement en juillet 2010 (plan issu du compte-rendu des travaux de comblement du puits Amélie 2, MDPA)

Un second échantillon a été prélevé au voisinage du puits Max (TB 610), cf. point vert sur le plan ci-dessous.

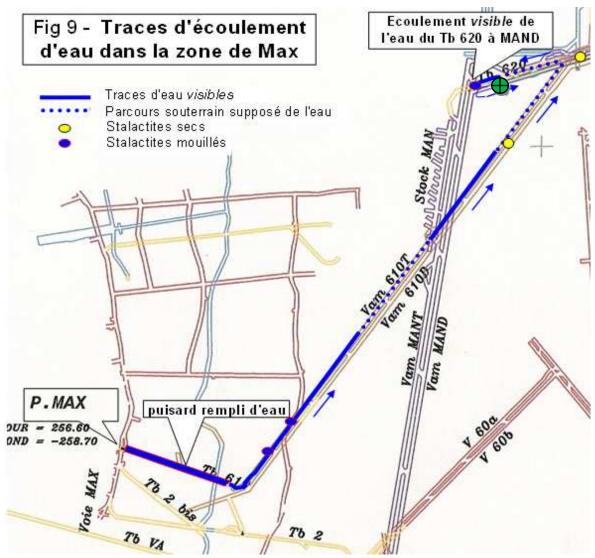


Figure 2 : Second point de prélèvement en juillet 2010 (plan issu du compte-rendu de visite au fond en 2007, MDPA)

3.2 CAMPAGNE DE SEPTEMBRE 2010

Le tableau qui suit indique les points de prélèvements et les résultats des mesures effectuées sur place. La localisation des points de prélèvements est donnée en Annexe A.

Tableau 1 : Synthèse des prélèvements et mesures réalisées (seconde campagne, septembre 2010)

Réf. laboratoire	Localisation	Volume	Caractéristique	Conductivité (mS/cm)	Température (°C)
10AS261	Tb 82, repère 20m - puisard Amélie 1	2 x 250mL (à ras bord)	Au mur (eau en surface, traces d'oxydes de fer et formation d'une croûte)	253	26,8
10AS262	Tb 88, étang, à proximité du puits Amélie 1	2 x 250mL (à ras bord)	Au mur (eau en surface, traces d'oxydes de fer mais pas de croûte)	268	22,6
10AS263	Tb 66 - puisard Amélie 2 (talus du fond Amélie 2 à 250m)	2 x 250mL (à ras bord)	Au mur (eau en surface, traces d'oxydes de fer et formation d'une croûte)	247	26,1
10AS264	Tb 66b	2 x 250mL (à ras bord)	Au mur (eau en surface, traces d'oxydes de fer et formation d'une croûte)	245	24,9
10AS265	Puits Amélie 2	2 x 250mL (pas à ras bord)	Au droit de stalactites (goutte à goutte)	255	24,9
10AS266	Câble HT à proximité du puits Amélie 1 (talus du fond à 60m)	2 x 250mL (pas tout à fait à ras bord)	Au droit de stalactites (goutte à goutte)	49	23,4

4. PROTOCOLE ANALYTIQUE ET RESULTATS D'ANALYSES

Comme indiqué précédemment, un protocole analytique spécifique a été développé sur la base d'essais menés sur les 2 échantillons de la première campagne de prélèvements de saumure (juillet 2010).

4.1 Analyse des 6 saumures prelevees en septembre 2010

Les chlorures ont pu être dosés après simple dilution des échantillons d'un facteur 100 000. Les analyses des anions (NO₃-, SO₄²-) ont été réalisées après piégeage des chlorures sur une cartouche de purification à base de résine échangeuse d'ions, par chromatographie d'échange d'ions selon la norme NF EN ISO 10304.

Le dosage des carbonates a été réalisé à l'aide d'un COTmètre par dosage du carbone inorganique selon la norme NF EN 1484.

Pour le dosage de la plupart des métaux, chacune des 6 saumures a été préalablement minéralisée à l'eau régale (HCI/HNO₃ dans les proportions 3/1) au four micro-ondes fermé selon la norme NF EN 15587. Les solutions minéralisées ont ensuite été filtrées.

Le dosage des métaux a été réalisé par ICP-OES et selon la norme NF EN ISO 11885 pour les éléments suivants :

Al, As, Ba, Ca, Cd, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sr, Zn et V.

Pour les éléments Mo et Sb, les analyses ont pu être réalisées sur saumure brute, après piégeage des chlorures sur une cartouche de purification à base de résine échangeuse d'ions, par ICP-MS selon la norme NF EN ISO 17294-2.

4.2 CARACTERISATION DES ELEMENTS METALLIQUES DANS LA CENDRE VOLANTE (AMELIE 2)

L'échantillon de cendre a été mis en solution par attaque acide totale (HCL, HNO₃, HF) au four micro-ondes fermé selon la norme NF EN 13656. Une analyse semiquantitative de la cendre a ensuite été réalisée par ICP-MS.

Pour identifier les éléments les plus solubles, un protocole de lessivage à l'eau distillée de la cendre a également été mis en œuvre (mise en contact, agitation et centrifugation). Les analyses semi-quantitatives des extraits ont ensuite été réalisées par ICP-MS.

Une lixiviation des cendres a également été réalisée selon la norme NF EN 12457-2.

L'ensemble des résultats est repris ci-après, les bordereaux d'analyses se trouvent en annexe.

Tableau 2 : Résultats de la lixiviation réalisée par l'INERIS sur la cendre volante du puits Amélie 2 (analyse du lixiviat sous traitée au laboratoire Eurofins)

Elément	Résultat	Unité
Vanadium (V)	0,09	mg/L
Sélénium	0,05	mg/L
Cuivre	<0,01	mg/L
Zinc	<0,02	mg/L
Arsenic	0,01	mg/L
Barium	0,14	mg/L
Plomb	0,01	mg/L
Chrome	0,14	mg/L
Lithium	0,50	mg/L
Nickel	<0,005	mg/L
Antimoine	<0,02	mg/L
Cadmium (Cd)	0,01	mg/L
Mercure	<0,20	μg/L

Tableau 3 : Résultats du lessivage/minéralisation totale réalisée par l'INERIS sur la cendre volante du puits Amélie 2 (en μg/g)

Elément	10AB611 SOLUBLE	10AB611 TOTAL
Ag	< 0,3	< 1
Al	217	-
As	0,6	38
Ве	< 0,3	8,5
Bi	< 0,3	1,6
Cd	< 0,3	< 1
Ce	0,3	84
Со	< 0,3	38
Cr	1,6	123
Cs	< 0,3	3,0
Cu	< 0,3	62
Dy	< 0,3	8,1
Er	< 0,3	4,8
Eu	< 0,3	2,0
Fe	57	45945
Ga	0,5	38
Gd	< 0,3	9,0
Ge	0,3	11
Hf	< 0,3	6,7
Hg	< 0,3	< 1
Но	< 0,3	< 1
In	< 0,3	< 1
Ir	< 0,3	< 1
La	< 0,3	44
Li	7,2	196
Lu	< 0,3	< 1

Eléments	10AB611 SOLUBLE	10AB611 TOTAL	
Mg	246	6927	
Mn	1,6	542	
Мо	2,6	10	
Nd	< 0,3	44	
Ni	< 0,3	87	
Р	53	3049	
Pb	0,6	< 1	
Pr	< 0,3	5,9	
Pt	< 0,3	< 1	
Re	< 0,3	< 1	
Rh	< 0,3	< 1	
Ru	< 0,3	< 1	
Sc	< 0,3	42	
Rb	0,4	41	
Sb	0,3	4,8	
Sm	< 0,3	9,1	
Sn	< 0,3	5,2	
Sr	48	1228	
Tb	< 0,3	< 1	
Te	< 0,3	< 1	
TI	< 0,3	1,4	
Tm	< 0,3	< 1	
V	1,8	194	
Υ	< 0,3	56	
Yb	< 0,3	4,7	
Zn	< 0,3	180	
Zr	0,4	266	

Incertitudes 50 % (analyse semi-quantitative).

Tableau 4 : Synthèse des résultats d'analyses pour la seconde campagne, septembre 2010 (INERIS)

Nom et réf. laboratoire	рН	HCO3- (mg/L)	CI- (g/L)	NO3- (mg/L)	SO42- (mg/L)
10AS261	4,4	< 2,54	180	0,14	864
10AS262	5,5	3,71	190	2,68	437
10AS263	6,0	16,7	178	0,25	798
10AS264	6,4	22,1	178	1,00	858
10AS265	6,1	14,1	179	0,30	999
10AS266	6,5	46,7	16,3	0,46	1289

Incertitudes 10 %.

Nom et réf, laboratoire	AI (mg/L)	Ba (mg/L)	Ca (mg/L)	Fe (mg/L)	K (mg/L)	Li (mg/L)	Mg (mg/L)	Na (mg/L)	Sr (mg/L)	Zn (mg/L)
10AS261	0,14	0,37	7580	48,9	9210	104	897	126000	128	0,90
10AS262	0,42	0,44	14900	11,8	35200	369	5010	84700	272	1,91
10AS263	0,91	0,23	7430	3,43	3410	106	1750	114000	145	5,86
10AS264	0,29	0,28	8050	2,91	2950	121	2350	114500	153	6,50
10AS265	0,99	0,33	6167	<0,04	13200	80,9	1210	119000	115	0,05
10AS266	0,18	0,23	986	<0,04	1490	8,42	1050	9840	34,9	<0,04

Incertitudes 15 %.

Suite de la synthèse des résultats d'analyses pour la seconde campagne, septembre 2010 (INERIS)

Nom et réf, laboratoire	As (µg/L)	Cd (µg/L)	Cr (µg/L)	Cu (µg/L)	Mn (µg/L)	Mo (μg/L)	Ni (µg/L)	Pb (µg/L)	Sb (µg/L)	Se (µg/L)	V (µg/L)
10AS261	< 40	< 80	< 20	< 20	7460	13,9	< 40	< 40	< 7,5	< 80	< 40
10AS262	< 40	< 80	< 20	< 20	5850	< 7,5	< 40	< 40	12,3	< 80	< 40
10AS263	< 40	< 80	< 20	206	9355	< 7,5	63,3	< 40	< 7,5	< 80	< 40
10AS264	< 40	< 80	< 20	80,5	10500	<7,5	44,4	< 40	< 7,5	< 80	< 40
10AS265	< 40	< 80	< 20	< 20	241	1003	< 40	< 40	< 7,5	< 80	< 40
10AS266	< 40	< 80	< 20	< 20	< 40	88,5	< 40	< 40	< 7,5	< 80	72,4

Incertitudes 15 %.

5. INTERPRETATION

5.1 ELEMENTS CARACTERISTIQUES DES CENDRES VOLANTES

D'après les résultats de la caractérisation des cendres et notamment de leur lixiviation (cf. Tableau 2 et Tableau 3), la circulation de l'eau dans les cendres volantes peut conduire à observer la présence et la concomitance des principaux éléments suivants : V, Se, Ba, Cr, Li. D'autres éléments sont identifiés mais non retenus car leur présence peut être attribuée à la nature des terrains traversés (bruit de fond naturel et anthropique³). Par exemple, Al peut provenir des argiles (silicates d'alumine) et des marnes présentes dans le gisement de sel.

5.2 ELEMENTS CARACTERISTIQUES DES SAUMURES

D'après le Tableau 4⁴ les 5 premiers échantillons prélevés au sein de la mine Amélie (cf. Tableau 1) sont caractérisés par de fortes concentrations en sels NaCl, KCl: ce sont des échantillons de saumure. Le 6ème, 10AS266, est également de type chlorurée sodique mais dans des proportions moindres: cependant, il convient de rappeler la provenance du fluide prélevé ici. Il y a quelques années, avant le rebouchage du puits Amélie 1, un câble Haute Tension a été laissé dans ce puits dans le but de tester la possibilité d'une liaison électrique simple et robuste entre le jour et le fond. Ce câble, dont l'isolement était contrôlé, a parfaitement résisté à la phase de chute des remblais dans le puits. Malheureusement, suite à une descente brutale du remblai de cendre le 9 mars 2007, ce câble a été arraché au jour et entraîné dans le puits. Selon les MDPA cet événement a permis un passage entre la gaine extérieure du câble et sa partie interne, créant ainsi une communication entre l'eau douce de la nappe alluviale et le fond.

Les eaux circulant dans ce câble et le long de celui-ci pourraient donc être en relation directe avec les cendres volantes. Des teneurs en Mo et en V sont effectivement observées (respectivement 88,5 μ g/L en Mo et 72,4 μ g/L en V). Cette signature - concomitance entre Mo et V à des teneurs supérieures aux Limites de Quantification (LQ) - n'est pas observée dans les autres échantillons.

Une concentration élevée en Mo est cependant à noter sur le prélèvement réalisé au niveau du puits Amélie 2 (10AS265) mais la concentration en V est inférieure à la LQ (< 40 μ g/L), Le prélèvement réalisé en ce point est situé à quelques mètres du puits Amélie 2.

Les 4 premiers prélèvements effectués sur des saumures stagnant au mur (étang etc.) montrent des teneurs plus importantes en Fe et Mn que les dans le cas des 2

INERIS-DRC-11-108130-06358A

³ Les données de l'Environnement local témoin ont été considérées dans l'interprétation (bruit de fond naturel et anthropique en nappe d'Alsace, données issues du suivi réglementaire mené par STOCAMINE).

⁴ Des résultats plus récents, prélèvement en avril 2011, transmis par les MDPA en juin 2011, confirment ces résultats cf. Annexe B (Amélie 1 puisard, correspond à réf. INERIS 10AS261 en septembre 2010).

prélèvements réalisés au droit de stalactites. Ces saumures sont en équilibre avec l'encaissant et les concentrations en Fe et Mn peuvent être attribuées à la présence d'un soutènement métallique (observation également de traces d'oxydes de fer et d'une croûte ferrugineuse lors des prélèvements).

Sur la base des prélèvements et des analyses réalisées, deux hypothèses peuvent être formulées quant à la circulation de l'eau douce provenant du jour (nappe alluviale) :

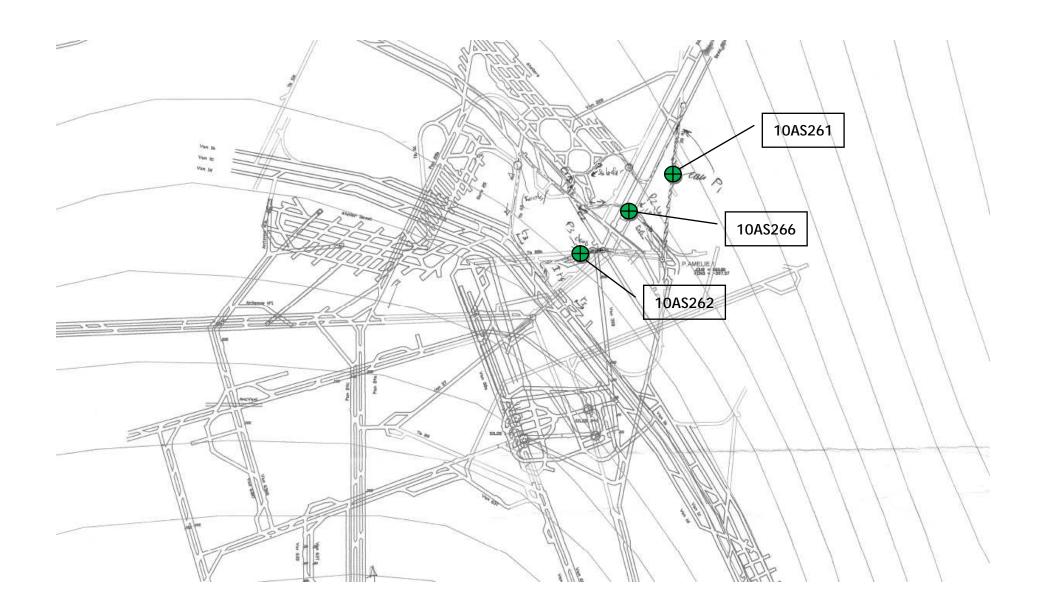
- soit le passage se fait par l'extrados seulement (la cendre volante n'a pas permis à l'eau d'arriver au fond depuis le comblement de ces puits) ;
- soit le passage se fait par les deux voies mais majoritairement par l'extrados (la dilution liée à la circulation prépondérante par l'extrados masquant les indices de circulation par l'intrados).

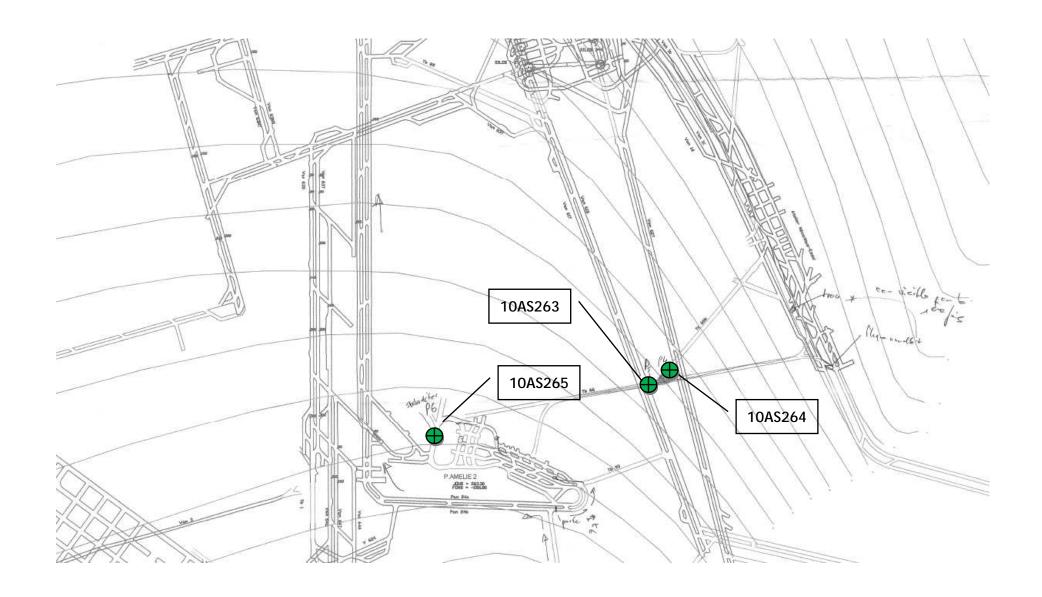
6. CONCLUSION

Les résultats des analyses réalisées ne mettent pas en évidence que le chemin d'écoulement préférentiel dans les puits est l'extrados. En effet, la méthode de comblement de l'intrados des puits ne permettent pas ce passage, à l'exception d'un échantillon (10AS266), et pour les raisons précédemment évoquées. Les analyses en laboratoire n'ont pas mis en évidence la présence d'éléments caractéristiques d'une circulation d'eau ou de saumure à travers les cendres volantes (V, Se, Ba, Cr, Li).

Dans ces conditions, l'hypothèse d'un passage préférentiel de l'eau d'infiltration par l'extrados, privilégiée par l'INERIS dans l'estimation des débits d'ennoyage des galeries semble cohérente et doit être adoptée dans les études ultérieures.

A la fin de l'ennoyage, la remontée de saumure par l'extrados peut donc être également privilégiée, dans le cadre de l'analyse des risques pour la ressource en eau (nappe d'Alsace).


Au niveau de la modélisation prédictive de l'impact de l'épanchement de saumure potentiellement contaminée dans la nappe alluviale, il conviendra donc de considérer une arrivée à l'endroit où l'extrados des puits atteint la nappe, c'est-à-dire la base des puits (couche inférieur du modèle).


7. <u>LISTE DES ANNEXES</u>

Repère	Désignation	Nb pages
Annexe A	Localisation des points de prélèvements de la campagne de septembre 2010 (plan MDPA complété au fond)	2 A3
Annexe B	Bordereaux d'analyses	15 A4

ANNEXE A

Localisation des points de prélèvements de la campagne de septembre 2010 (plan MDPA complété au fond)

ANNEXE B

Bordereaux d'analyses

Matrice : Eau souterraine

		Référence EUROFINS:	10E021684-001
		Référence Client :	Lixiviat cendre
Méthodes	Paramètres	Unités	
Sous traitance spécifique	Sous traitance spécifique	-	
Métaux par ICP/AES	Antimoine	mg/l Sb	<0.02
	Arsenic	mg/l As	0,014
	Baryum	mg/l Ba	0,141
	Bore	mg/l B	
	Cadmium	mg/l Cd	0,011
	Chrome	mg/l Cr	0,136
	Cuivre	mg/l Cu	<0.01
	Lithium	mg/l Li	0,503
	Nickel	mg/l Ni	< 0.005
	Plomb	mg/l Pb	0,011
	Selenium	mg/l Se	0,05
	Strontium	mg/l Sr	
	Vanadium	mg/l V	0,092
	Zinc	mg/l Zn	<0.02
Mercure par SFA	Mercure	μg/l	<0.20

RESULTATS D'ANALYSES

Attention : au-delà du 15/11/2010, vérifier à l'aide du réseau, la validité du présent document papier.

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable d'affaire.

Nota: ce document a été émis et est géré par l'unité « Chimie analytique et environnementale »

Original:	A. PAPIN		Copie (s):	o esa	Classeur résultats APp, AG	s. DH, HBi,
Demandeur interne	A. PAPIN		Client externe :			
Contribution n°:	116887		PRESTATION	N°:	108130	
Commande / Bon N°:		l N° 17890	Demande du :		04/10/2010	
Date de réception des objets soumis à essai :	05/10/2010					
Dbjets soumis à essais Retournés pour Exposé de la demande	destruction après s	stockage		rnés pour re	estitution au demar	ndeur 🗌
osage Cl, NO ₃ , SO ₄ ²	HCO3 déterminat	ion du pH, du ta	aux de résidu sec s	ur deux sau	mures.	
Posage Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ es nitrates après piégea Posage HCO ₃ ⁻ selon NF H: papier pH Lésidu sec: évaporatior	ige des chlorures su FEN 1484	ir une cartouche	DIONEX On-Gu	ard Ag).	O 10304 (dosage d	es summes
				200		
restation Cofrac:	OUI		NON	\boxtimes		
		essous (le cas é		-	s par la portée d'a	ccréditation
restation Cofrac : as des prestations Co oir ci-dessus.	frac : préciser ci-d		chéant) les essais	-	s par la portée d'a	ccréditatior
restation Cofrac : Cas des prestations Co Oir ci-dessus. Dates de traitement (ex	ofrac : préciser ci-d		chéant) les essais	-	s par la portée d'a	ccréditatior
restation Cofrac :	ofrac : préciser ci-d		chéant) les essais	-	s par la portée d'a	ccréditation

Réf. échantillon	Désignation	mg Cl'/l	mg SO ₄ 2-/l	mg NO ₃ -/I	mg HCO ₃ -/l	g résidu sec/l	pН
10AA509	S100MPM	197000	760	< 20	15	390	5
10AA510	S286A2	187000	1040	< 20	17	376	5

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable de l'Entité concernée

RESULTATS D'ANALYSES

alité :	:
	alité :

Cl'	Résultat	Commentaires
Etalon de contrôle de justesse de la gamme d'étalonnage	Rdt Cl (étalon HG / étalon gamme)= 95%	Etalon contrôle 0,50 mg/l. Résultats satisfaisants
	CV= 2,66%. Rdt Cl ⁻ (étalon HG / étalon gamme)= 100% CV= 3,87%.	
Incertitudes	Incertitude =15% (pour 0,50 mg/l). Incertitude =5% (pour 5,0 mg/l).	Selon l'approche du contrôle interne de la norme XP T 90-220.
Limites de détection (LD)	LD = LQ/3	AP 1 90-220.
Limites de quantification (LQ)	0,1 mg Cl7/l soit 10000mg Cl/l en tenant compte de la dilution	LQ manipe

SO ₄ ² - Etalon de contrôle de justesse de la gamme d'étalonnage	Résultat Rdt SO ₄ ²⁻ (étalon HG / étalon gamme)= 98 % CV= 3,41 %.	Commentaires Etalon contrôle 5,00 mg/l. Résultats satisfaisants
Incertitudes Limites de détection (LD)	Résultat supérieur à 0,50 : Incertitude = 5 % LD = LO/3	Incertitude de la validation de méthode selon la norme NF T 90-210.
Limites de quantification (LQ)	0.2 - 0.0 2-4 1 20 - 2	LQ méthode et vérifiée par LQ manipe

NO ₃	Résultat	Commentaires
talon de contrôle de justesse e la gamme d'étalonnage	/	/
certitudes	/	
mites de détection (LD)	LD = LQ/3	1
mites de quantification (LQ)	0,2 mg NO ₃ 7/l soit 20mg NO ₃ 7/l en tenant	LQ manipe
	compte de la dilution	EQ mampe

HCO ₃	Résultat	Commentaires
Etalon de contrôle de justesse de la gamme d'étalonnage	Rdt CI (étalon HG / étalon gamme)=109%	Etalon contrôle 5 mg CI/l. Résultats satisfaisants
	CV= 1,41 %. Rdt CI (étalon HG / étalon gamme)=125% CV= 2,66 %.	Etalon contrôle 0,5 mg CI/I. Résultats satisfaisants
Incertitudes	Incertitude = 10 %	Selon l'approche du contrôle incentrale
Limites de détection (LD)		Selon l'approche du contrôle interne de la norme XP T 90-220.
Linites de detection (LD)	LD = LQ/3	
Limites de quantification (LQ)	0,5 mg C/l soit 13mg HCO ₃ en tenant compte de la dilution	LQ manipe

Résidu sec	Résultat	
▼00000000447 /2 /2		Commentaires
Incertitudes	+/- 0,0006 g	2 fois l'écart-type de reproductibilité sur des blancs selon norme NF EN 13284-1
Limites de détection (LD)	0,00067 g	Estimation de la limite de détection selon la
Limites de quantification (LQ)	3 x LD soit 0,0020 g	norme NF EN 13284-1.

Nota: Sauf avis contraire, les objets soumis à essai et leurs préparations seront éliminés 2 semaines après l'envoi des

2/2

Date/Visa & 18/10/2010

Responsable technique : A. PAPIN

Date/Visa 17/10/10
Technicien: N. CHATELLIER

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable de l'Entité concerne

RESULTATS D'ANALYSES

Attention : au-delà du 27/11/2010 , vérifier à l'aide du réseau, la validité du présent document papier.

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable d'affaire.

	Nota : ce doci	imeni u ete em	9 .		
Original:	JC. PINTE		Copie (s):		F. QUIOT
			OK, le 28/1	0/10	H. BIAUDET
			c?	A	A. PAPIN
					D. HERVIN
	4				AG
					Labo chimie minérale
Demandeur interne	D. HERVIN	5	Client externe:		STOCAMINE
Contribution n°:	116887		PRESTATION	N°:	108130
Commande / Bon N°:	17890		Demande du :		04/10/10
Date de réception des objets soumis à essai :	04/10/10		Date d'analyse :		Semaine 41
Objets soumis à essais : E Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau.	osage des éléme	ents calcium (Ca), magnésium (M	g), potass	restitution au demandeur Kium (K), sodium (Na), ium (Li), cadmium (Cd) dans
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau.	osage des élémo), arsenic (As), a en gras car la m es en attente de c	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (M plomb (Pb), chrome (gée en sels perturbe urification.	g), potass (Cr), lithi	ium (K), sodium (Na),
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau. Résultats pour les éléments en non-concluant) nous somme Description du mode opéra Eléments Ca, Mg, K, Na et I	osage des élémo), arsenic (As), a en gras car la m es en attente de c	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (M plomb (Pb), chrome (gée en sels perturbe urification.	g), potass (Cr), lithi	ium (K), sodium (Na), ium (Li), cadmium (Cd) dans
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau. Résultats pour les éléments d'enon-concluant) nous somme Description du mode opéra Eléments Ca, Mg, K, Na et I	en gras car la mes en attente de la toire: Li: analyse à l'	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (M. plomb (Pb), chrome (Pb),	g), potass (Cr), lithi	ium (K), sodium (Na), ium (Li), cadmium (Cd) dans
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau. Résultats pour les éléments en non-concluant) nous somme Description du mode opéra Eléments Ca, Mg, K, Na et I	en gras car la mes en attente de la toire: Li: analyse à l'	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (Molomb (Pb), chrome (Pb), ch	g), potass (Cr), lithi	ium (K), sodium (Na), ium (Li), cadmium (Cd) dans
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau. Résultats pour les éléments en non-concluant) nous somme	en gras car la mes en attente de la toire: Li: analyse à l'	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (M. plomb (Pb), chrome (Pb),	g), potass (Cr), lithi	ium (K), sodium (Na), ium (Li), cadmium (Cd) dans
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) deux échantillons d'eau. Résultats pour les éléments en non-concluant) nous somme Description du mode opéra Eléments Ca, Mg, K, Na et I	en gras car la mes en attente de la toire: Li: analyse à l'	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (Molomb (Pb), chrome (Pb), ch	g), potass (Cr), lithi	ium (K), sodium (Na), ium (Li), cadmium (Cd) dans
Retournés pour des Exposé de la demande : De vanadium (V), sélénium (Se) leux échantillons d'eau. Résultats pour les éléments d'enon-concluant) nous somme Description du mode opéra Eléments Ca, Mg, K, Na et I	en gras car la mes en attente de la toire: Li: analyse à l'	ents calcium (ebaryum (Ba), patrice très cha cartouche de p	Ca), magnésium (Molomb (Pb), chrome (Pb), ch	g), potass (Cr), lithi	ium (K), sodium (Na), ium (Li), cadmium (Cd) dans

RESULTATS D'ANALYSES

Résultats : concentrations en mg/l

Référence INERIS	10AA509	10AA510
Référence externe	S100MPM	S286A2
Ca	9691	6881
K	41928	19104
Li	95.3	51.7
Mg	129	1174
Na	102443	115527

Assurance qualité :

Technique	Paramètres	Méthode	Résultats				
	Matériau de référence	Rendements sur l'eau de référence SRM1643e (EAU25). (*) concentrations en dehors des limites de quantification	Ca: 102-101% K(*): 111-108% Mg(*): 103-104% Na: 99-99%				
	Justesse de la droite d'étalonnage	Contrôle de la justesse de la gamme et de la dérive de la réponse en cours de séquence par l'analyse d'un étalon hors-gamme					
ICP-OES	Limites de quantification	Selon le norme NF 90-210 Méthode par vérification d'une limite de quantification choisie.					
	Incertitudes de mesures	Evaluation de la reproductibilité du processus d'analyse par l'analyse de l'étalon hors-gamme (5000ppb) et pour le Li, de l'eau de référence SRM1640 (cf ncienne carte de contrôle EAU8 et EAU15).	Ca: 10% K: 10% Li: 25% Mg: 10% Na: 10%				

Observations:

Nota: Sauf avis contraire, les objets soumis à essai et leurs préparations seront éliminés 8 semaines après l'envoi des résultats.

Date/Visa

Responsable technique: A. PAPIN

li 25/10/ 2010

Date/Visa

Technicien: C. DENIZE

19/10/10

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable de l'Entité concernée

RESULTATS D'ANALYSES

Attention: au-delà du 10/6/2011, vérifier à l'aide du réseau, la validité du présent document papier.

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable d'affaire.

Original:	F. QUIOT	Copie (s): OK, le 16/05/11 pute	Classeur résultats. DH, HBi, APp, AG -DE BARROS Que
Demandeur interne	F. GUILLOT	Client externe :	STOCAMINE
Contribution n°:	116887	PRESTATION N°:	108130
Commande / Bon N°:	Bon léopard N° 17889	Demande du :	30/09/2010
Date de réception des objets soumis à essai :	04/05/2011		
	struction après stockage		estitution au demandeur
lesure du pH et dosage Cl	, NO ₃ , SO ₄ ² , HCO ₃ sur six	eaux.	
escription du mode opér lesure du pH selon la norn osage HCO3 selon la norn		u besoin):	,
	n la norme NF EN ISO 1030	4.	
		4. NON 🖂	
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² -selo	on la norme NF EN ISO 1030		s par la portée d'accréditation :
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² -selo restation Cofrac : as des prestations Cofrac oir ci-dessus.	on la norme NF EN ISO 1030	NON (Sechéant) les essais non couvert	s par la portée d'accréditation :
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² -selo restation Cofrac : as des prestations Cofrac oir ci-dessus.	OUI C: préciser ci-dessous (le cas	NON (Sechéant) les essais non couvert	s par la portée d'accréditation :
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² -selo restation Cofrac : as des prestations Cofrac oir ci-dessus. ates de traitement (extra	OUI c: préciser ci-dessous (le cas	NON (Sechéant) les essais non couvert	s par la portée d'accréditation :
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² -selo restation Cofrac : as des prestations Cofrac oir ci-dessus. ates de traitement (extra H : Mesure le 10/05/2011.	OUI c: préciser ci-dessous (le cas ction, minéralisation) et d	NON (Sechéant) les essais non couvert	s par la portée d'accréditation :
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² -selo restation Cofrac: as des prestations Cofrac oir ci-dessus. ates de traitement (extra H: Mesure le 10/05/2011. CO ₃ ⁻ Dosage le 05/05/201	OUI c: préciser ci-dessous (le cas ction, minéralisation) et d	NON (Sechéant) les essais non couvert	s par la portée d'accréditation :
osage Cl ⁻ , NO ₃ ⁻ , SO ₄ ² selo restation Cofrac: as des prestations Cofrac oir ci-dessus. ates de traitement (extra H: Mesure le 10/05/2011. CO ₃ ⁻ Dosage le 05/05/201	OUI c: préciser ci-dessous (le cas ction, minéralisation) et d	NON échéant) les essais non couvert	s par la portée d'accréditation :

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable de l'Entité concert

RESULTATS D'ANALYSES

Résultats:

Référence échantillon	pН	HCO ₃	Cl ⁻	NO ₃	SO ₄ ² -
		(mg/l)	(g/l)	(mg/l)	(mg/l)
10AS261	4,4	< 2,54	180	0,14	864
10AS262	5,5	3,71	190	2,68	437
10AS263	6,0	16,7	178	0,25	798
10AS264	6,4	22,1	178	1,00	858
10AS265	6,1	14,1	179	0,30	999
10AS266	6,5	46,7	16,3	0,46	1289

Les résultats compris entre la LD et la LQ (limite de quantification) sont indiqués < LQ.

RESULTATS D'ANALYSES

Assurance qualité :

Cl.	Résultat	Commentaires
Etalon de contrôle de justesse de la gamme d'étalonnage	Rdt Cl ⁻ (étalon HG / étalon gamme)= 95 % CV=2,64 %.	Etalon contrôle 0,50 mg/l. Résultats satisfaisants
	Rdt Cl ⁻ (étalon HG / étalon gamme)= 101 % CV= 3,69 %.	Etalon contrôle 5,00 mg/l. Résultats satisfaisants
Incertitudes	Incertitude = 20 % (pour 0,5 mg/l). Incertitude = 5 % (pour 5,0 mg/l).	Selon l'approche du contrôle interne de la norme XP T 90-220.
Limites de détection (LD)	LD = LQ/3	
Limites de quantification (LQ)	0,01 mg Cl ⁻ /l (sans tenir du compte du facteur de dilution)	LQ manipe

NO ₃	Résultat	Commentaires
Etalon de contrôle de justesse de la gamme d'étalonnage	Rdt NO ₃ (étalon HG / étalon gamme)= 95 % CV= 1,97%.	Etalon contrôle 0,50 mg/l. Résultats satisfaisants
n	Rdt NO ₃ ⁻ (étalon HG / étalon gamme)= 100 % CV= 3,41 %.	Etalon contrôle 5,00 mg/l. Résultats satisfaisants
Incertitudes	Incertitude = 10 % (pour 0,5 mg/l). Incertitude = 5 % (pour 5,0 mg/l).	Selon l'approche du contrôle interne de la norme XP T 90-220.
Limites de détection (LD)	LD = LQ/3	
Limites de quantification (LQ)	0,01 mg NO ₃ ⁻ /l soit 0,10 mg/l (avec le facteur de dilution)	LQ manipe

SO ₄ ² -	Résultat	Commentaires
Etalon de contrôle de justesse de la gamme d'étalonnage	Rdt SO ₄ ² · (étalon HG / étalon gamme)= 94 % CV= 0,95 %.	Etalon contrôle 0,50 mg/l. Résultats satisfaisants
	Rdt SO ₄ ²⁻ (étalon HG / étalon gamme)= 101 % CV= 3,56 %.	Etalon contrôle 5,00 mg/l. Résultats satisfaisants
Incertitudes	Incertitude = 10 % (pour 0,5 mg/l). Incertitude = 5 % (pour 5,0 mg/l).	Selon l'approche du contrôle interne de la norme XP T 90-220.
Limites de détection (LD)	LD = LQ/3	
Limites de quantification (LQ)	0,01 mg SO ₄ ² -/l (sans tenir compte du facteur de dilution)	LQ manipe

HCO ₃	Résultat	Commentaires
Etalon de contrôle de justesse de la gamme d'étalonnage	Rdt NO ₃ ⁻ (étalon HG / étalon gamme)= 115 % CV= 0,84%.	Etalon contrôle 0,50 mg/l. Résultats satisfaisants
Incertitudes	Incertitude: 10 %	Incertitude sur la moyenne des essais
Limites de détection (LD)	LD = LQ/3	•
Limites de quantification (LQ)	0,50 mg C/l soit 2,54 mg HCO ₃ /l	LQ manipe

Observations: LES ECHANTILLONS DATANT DU MOIS DE SEPTEMBRE, LES RESULTATS CI-DESSUS DOIVENT ETRE INTERPRETES AVEC PRECAUTION (La matrice a forcement évolué durant les 9 mois de stockage pour ce type de paramètre).

Nota: Sauf avis contraire, les objets soumis à essai et leurs préparations seront éliminés 2 semaines après l'envoi des résultats.

Date/Visa le 10/05/2011 Responsable technique : A. PAPII

Date/Visa le 10 mai 2011

Techniciens: N. CHATELLIER / V. MINGUET

ument ne peut être communiqué à des tiers sans autorisation écrite du responsable

RESULTATS D'ANALYSES

Attention: au-delà du 12/6/2011, vérifier à l'aide du réseau, la validité du présent document papier.

Ce document ne peut être communiqué à des tiers sans autorisation écrite du responsable d'affaire.

Original :	F. QUIOT	Copie (s):	
			J.C. PINTE
•			H. BIAUDET
•			
			A. PAPIN
		· ·	D. HERVIN
•			
•			AG
•			
		OT :	Labo chimie minérale
Demandeur interne	F. GUILLOT	Client externe :	STOCAMINE
Contribution n°:	116887	PRESTATION N°:	108130
Commande / Bon N°:	17889	Demande du :	30/09/2010
Date de réception des		Date d'analyse :	Semaine 19
objets soumis à essai :		<u> </u>	
jets soumis à essais : Er			
Retournés pour dest	ruction anrès stockage	Refournes nour	restitution au demandeur
xposé de la demande : <i>Do</i> <i>Ca), cadmium (Cd), chrom</i>	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe)	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba
sposé de la demande : <i>Do</i> la), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M	nic (As), baryum (Ba), calciu
posé de la demande : <i>Do</i> a), cadmium (Cd), chrom to), nickel (Ni), plomb (Pl	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba
posé de la demande : <i>Do</i> a), cadmium (Cd), chrom fo), nickel (Ni), plomb (Pl ns six échantillons d'eau.	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba
sposé de la demande : <i>Do</i> a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire :	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba
sposé de la demande : <i>Do</i> a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire :	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba
rposé de la demande : Do a), cadmium (Cd), chrom fo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra inéralisation des eaux selor éments Al, As, Ba, Ca, Cd 79.	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba
rposé de la demande : Do a), cadmium (Cd), chrom fo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra inéralisation des eaux selor éments Al, As, Ba, Ca, Cd 79.	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn,	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
aposé de la demande : Do a), cadmium (Cd), chrome fo), nickel (Ni), plomb (Plens six échantillons d'eau. escription du mode opéra inéralisation des eaux selonéments Al, As, Ba, Ca, Cd 79.	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn,	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
rposé de la demande : Do a), cadmium (Cd), chrom fo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra inéralisation des eaux selor éments Al, As, Ba, Ca, Cd 79.	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn,	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
posé de la demande : Do a), cadmium (Cd), chrom o), nickel (Ni), plomb (Pl ns six échantillons d'eau. scription du mode opéra néralisation des eaux selo ements Al, As, Ba, Ca, Cd 79. ements Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
sposé de la demande : Do a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra méralisation des eaux selon ements Al, As, Ba, Ca, Cd 79. ements Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
sposé de la demande : Do a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra méralisation des eaux selon ements Al, As, Ba, Ca, Cd 79. ements Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
posé de la demande : Do a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. scription du mode opéra néralisation des eaux selo ements Al, As, Ba, Ca, Cd 79. ements Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
sposé de la demande : Do a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra méralisation des eaux selon ements Al, As, Ba, Ca, Cd 79. ements Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
sposé de la demande : Do a), cadmium (Cd), chrom lo), nickel (Ni), plomb (Pl ns six échantillons d'eau. escription du mode opéra méralisation des eaux selon ements Al, As, Ba, Ca, Cd 79. ements Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn
posé de la demande : Do a), cadmium (Cd), chrom o), nickel (Ni), plomb (Pl ns six échantillons d'eau. scription du mode opéra néralisation des eaux selon ments Al, As, Ba, Ca, Cd 79. ments Mo, Sb : analyse à	sage des éléments antimoin e (Cr), cuivre (Cu), fer (Fe) b), potassium (K), sélénium toire : n la norme NF EN 15587. , Cr, Cu, Fe, K, Li, Mg, Mn, l'ICP-MS selon MO-0918.	e (Sb), aluminium (Al), arsei , lithium (Li), magnésium (M (Se), sodium (Na), strontium Na, Ni, Pb, Se, Sr, Zn, V : ar	nic (As), baryum (Ba), calciu Ig), manganèse (Mn), molyba (Sr), vanadium (V), zinc (Zn

RESULTATS D'ANALYSES

Résultats : concentrations en mg/l (éléments majeurs)

Référence	Al	Ba	Ca	Fe	K	Li	Mg	Na	Sr	Zn
échantillon										
10AS261	0,14	0,37	7 580	48,9	9 210	104	897	126 000	128	0,90
10AS262	0,42	0,44	14 900	. 11,8	35 200	369	5 010	84 700	272	1,91
10AS263	0,91	0,23	7 430	3,43	3 410	106	1 750	.114 000	145	5,86
10AS264	0,29	0,28	8 050	2,91	2 950	121	2 350	114 500	153	6,50
10AS265	0,99	0,33	6 167	<0,04	13 200	80,9	1 210	119 000	115	0,05
10AS266	0,18	0,23	986	<0,04	1 490	8,42	1 050	9 840	34,9	<0,04

Résultats : concentrations en µg/l (éléments traces métalliques)

Référence échantillon	As	Cd	Cr	Cu	Mn	Мо	Ni	Pb	Sb	Se	V
10AS261	<40	<80	<20	<20	7 460	13,9	<40	<40	<7,5	<80	<40
10AS262	<40	<80	<20	<20	5 850	<7,5	<40	<40	12,3	<80	<40
10AS263	<40	<80	· <20	206	9 355	<7,5	63,3	<40	<7,5	<80	<40
10AS264	<40	<80	<20	80,5	10 500	<7,5	44,4	<40	<7,5	<80	<40
10AS265	<40	<80	<20	<20	241	1003	<40	<40	<7,5	<80	<40
10AS266	<40	<80	<20	<20	<40	88,5	<40	<40	<7,5	<80	72,4

Les résultats compris entre la LD et la LQ (limite de quantification) sont indiqués < LQ.

RESULTATS D'ANALYSES

Assurance qualité :

Technique	Paramètres	Méthode	Résultats
			Al: 112 et 100% Ba: 104 et 96 % Ca: 100% Cd: 99%
			Cr : 101 et 101% Cu : 101% Fe : 98 et 91%
	Matériau de référence	Rendements sur les eaux de référence TMDA 64.2 (EAU26) ET SRM1643E (EAU27). (*) concentrations en dehors des limites de quantification	K : 118% Li : - Mg : 97%
			Mn : 85 et 94% Na : 105% Ni : 103 et 81% Pb : 98% Sr : 94 et 83%
ICP-OES			V : 103 et 116% Zn : 98 et 96%
	Justesse de la droite d'étalonnage	Contrôle de la justesse de la gamme et de la dérive de la réponse en cours de séquence par l'analyse d'un étalon hors-gamme	Recouvrement : 80%< <120%
	Limites de quantification	Selon les normes NF T 90-210 Méthode par vérification d'une limite de quantificati	on choisie.
·	Incertitudes de mesures	Evaluation de la reproductibilité du processus d'analyse par l'analyse de l'étalon hors-gamme (500ppb).	15%

Ce document ne neut être communiqué à des tiers sans autorisation écrite du responsable de l'Entité concernée

RESULTATS D'ANALYSES

Technique	Paramètres	Méthode	Résultats
	Matériau de référence	Rendements sur l'eau de référence SRM1643e (EAU27).	Mo : 97% Sb : 98%
	Justesse de la droite d'étalonnage	Contrôle de la justesse de la gamme et de la dérive de la réponse en cours de séquence par l'analyse d'un étalon hors-gamme	Recouvrement : 90%< <110%
I	Limites de quantification	Selon la norme NF T 90-210 Méthode par vérification d'une limite de quantification	n choisie.
	Incertitudes de mesures	Evaluation de la reproductibilité du processus d'analyse par l'analyse de l'étalon hors-gamme (10ppb).	15 %

Observations:: LES ECHANTILLONS DATANT DU MOIS DE SEPTEMBRE, LES RESULTATS CI-DESSUS DOIVENT ETRE INTERPRETES AVEC PRECAUTION.

Nota: Sauf avis contraire, les objets soumis à essai et leurs préparations seront éliminés 8 semaines après l'envoi des résultats.

Responsable technique : A. PAPIN

4 12/05/2011

Date/Visa \(\lambda 2 / 0 \lambda / l)\)
Technicien: C. DENIZE

Technicien: B. DEFREN

IPL santé, environnement durables Est

Laboratoires agréés par le Ministère chargé de l'environnement Laboratoires agréés par le Ministère chargé de la santé : A,T (3)

Accréditations COFRAC N° 1-0685, 1-0687

Liste des sites accrédités et portées disponibles

Affaire suivie par

Isabelle CARNINO

Site de Colmar Biopôle - 28 rue de Herrlisheim

CS 30036

68025 COLMAR

Tél.: 03.68.34.03.00 Fax: 08.20.20.90.32

Vos références

AMELIE 1 PUISARD Vos coordonnées

Tél: 03.89.57.87.38 Fax: 03.89.57.87.13

Tél direct : 03.89.57.87.38 Fax direct : 03.89.57.87.13 Mail : m.severac@mdpa.fr

MDPA AVENUE JOSEPH ELSE BP 50 68310 WITTELSHEIM Mme SEVERAC Morgane

Rapport d'analyse n° C11-15161-R01 rev. 0

Les résultats ne se rapportent qu'à cet échantillon. Ce document comporte 2 pages. La reproduction de ce document n'est autorisée que sous la forme de fac similé photographique intégral. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *. Les commentaires et conclusions, autres que les comparaisons aux limites de qualité et les avis simples sur la qualité de l'échantillon ne sont pas couverts par l'accréditation COFRAC.

Echantillon N°: Nature:

C11-15161-R01

Eaux Résiduaires

Commune: Libellé:

Non communiqué

AMELIE 1 PUISARD Origine: Non communiqué

Date de prélèvement :

07/04/2011

Prélèvement effectué par :

CLIENT

Date de réception : Date de début d'analyse (1) : 13/04/2011 à 14:00

Date de fin d'analyse :

14/04/2011 20/05/2011

Paramètre	Méthode	Résultat (2)	Labo (3
aramètres globaux	THE REPORT OF THE PARTY OF THE	TO THE STATE OF TH	
Nitrates	NF EN ISO 13395	0,31 mg N/I	Т
aramètres physico-chimiques			
Hydrogénocarbonates	NF EN ISO 9963-1	< 6 mg HCO3/l	Т
Chlorures	Electrophorèse Capillaire	210000 mg Cl/l	Т
Bromures	NF EN ISO 10304-2	610 mg Br/l	Т
Fluorures	NF EN ISO 10304-2	< 0,050 mg F/I	т
lodures	NF EN ISO 10304-3	< 0,5 mg I/I	A
Sulfates	Electrophorèse Capillaire	1100 mg SO4/I	Т
Calcium	NF EN ISO 11885	6100 mg Ca/I	т
Potassium	Electrophorèse Capillaire	8400 mg K/I	Т
Sodium	Electrophorèse Capillaire	110000 mg Na/I	т
ligo-éléments - Micropolluants minéraux			MINE I
Arsenic	NF EN ISO 11885	< 0,01 mg As/l	Т
Baryum	NF EN ISO 11885	0,39 mg Ba/l	т
Bore	NF EN ISO 11885	3,1 mg B/I	Т
Chrome	NF EN ISO 11885	< 0,01 mg Cr/l	Т
Lithium	NF EN ISO 17294-2	119500,00 µg Li/l	A
Magnésium	NF EN ISO 11885	490 mg Mg/I	Т
Nickel	NF EN ISO 11885	< 0,01 mg Ni/I	Т
Plomb	NF EN ISO 11885	< 0,01 mg Pb/l	Т
Rubidium	NF EN ISO 17294-2	< 5 μg Rb/l	A
Sélénium	NF EN ISO 11885	< 0,01 mg Se/l	Т
Vanadium	NF EN ISO 11885	< 0,01 mg V/I	т
Zinc	NF EN ISO 11885	0,28 mg Zn/l	Т

Siège social : IPL santé, environnement durables Est, rue Lucien Cuénot, Site Saint Jacques II, BP 51005, 54521 Maxéville Cedex S.A.S au capital de 1499553 € - R.C.S Nancy B 756 800 090 - SIRET 756 800 090 00257 - APE 7120B

Rapport d'analyse n° C11-15161-R01 rev. 0

Page 2/2

Paramètre Méthodo		rage ziz
Méthode	Résultat (2)	Labo (3)
NF EN ISO 11885	110 mg Sr/l	
		NE EN IOC MOSE

Préparation des analyses						
	Préparation	Méthode	Application			
٠	Minéralisation à l'eau régale	NF EN ISO 15587-1	Calcium, Arsenic, Baryum, Bore, Chrome, Magnésium, Nickel, Plomb, Sélénium, Vanadium, Zinc, Strontium			
	Minéralisation à l'acide nitrique	NF EN ISO 15587-2	Lithium, Rubidium			

⁽¹⁾ La date de début d'analyse correspond à la date de début des analyses réalisées dans les laboratoires IPL.

Fluorures : La limite de quantification a été augmentée en raison du caractère particulier de la matrice.

COLMAR, le 23/05/2011 Marie Andrée LAURENT Resp. technique

⁽²⁾ Les résultats précèdés du signe < correspondent aux limites de quantification. NC = non calculable. Les sommes de paramètres dont les concentrations sont toutes inférieures à la limite de quantification n'étant pas calculables, elles sont signalées par la mention (NC) avec rappel éventuel, à titre indicatif, de la limite de quantification la plus élevée parmi les termes de la somme. Toutes les informations relatives à l'analyse sont disponibles au laboratoire (incertitudes, ...).

⁽³⁾ Laboratoire de réalisation de l'analyse (n° d'accréditation) : A : Laboratoires Maxéville (1-0685), T : Laboratoire d'Alsace Franche-Comté (1-0687), S : Analyse sous-traitée dans un laboratoire extérieur, C : Analyse réalisée par le client. Liste des sites accrédités et portées disponibles sur www.cofrac.fr.